1.高温合金是什么材料

2.高温合金是什么,有什么用

3.高温合金材料一般都有哪些,有什么特点

4.粉末冶金法的我国粉末冶金法发展现状

高温合金是什么材料

高温合金金属粉末_我国最新高温粉末合金价格

一、概述

NS112是一种与Incoloy 800同系列的全奥氏体低碳的镍-铁-铬合金,该合金中的钴含量可以严格控制在0.01%以下。NS112能耐很多腐蚀介质腐蚀。其较高的镍含量使其在水性腐蚀条件具有很好的抗应力腐蚀开裂性能。高铬含量使之具有更好的耐点腐蚀和缝隙腐蚀开裂性能。该合金具有很好的耐硝酸、有机酸腐蚀性,但是在硫酸和盐酸中的耐腐蚀性有限。除了在卤化物有可能发生点腐蚀外,在氧化性和非氧化性盐中有很好的耐腐蚀性。在水、蒸气以及蒸汽、空气、二氧化碳的混合物中也具有很好的耐腐蚀性。应用于硝酸冷凝器——耐硝酸腐蚀、蒸汽加热管——很好的机械性能、加热元件管——很好的机械性能等。对于应用于高达500℃的环境,合金供货态为退火态。?

NS112物理性能:

密度:ρ=8.0g/cm3

熔化温度范围:1350~1400℃

NS112机械性能:(在20℃检测机械性能的最小值)

下表中所列性质适用于NS112合金的指定规格产品软化退火(稳定化退火)后的情况。非标准尺寸材料的特殊性能可以根据特定应用场合的要求提供。

室温机械性能(最小值)

NS112具有以下特性:

●在高达500℃的极高温的水性介质中具有出色的抗腐蚀性

●很好的抗应力腐蚀的性能

●很好的加工性

NS112牌号和标准:

NS112ISO V型缺口冲击试验:

室温平均值:轴向>=150J/cm2

径向>=100J/cm2

时间-温度-敏化曲线

NS112条件应力值:

达到90%屈服强度的高条件应力值可应用于允许略大一点变形量的应用场合。这些应力引起的永久应力会导致尺寸的变化,因此不推荐用于法兰和密封垫圈连接件。

NS112金相结构:

NS112合金具有稳定的面心立方结构。化学成分和恰当的热处理保证了耐腐蚀性不受敏化性的削弱。

NS112耐腐蚀性:

NS112是一种通用的工程合金,在氧化和还原环境下都具有抗酸和碱金属腐蚀性能。

高镍成份使合金具有有效的抗应力腐蚀开裂性。

在各种介质中的耐腐蚀性都很好,如硫酸、磷酸、硝酸和有机酸,碱金属如氢氧化钠、氢氧化钾和盐酸溶液。

NS112较高的综合性能表现在腐蚀介质多样的核燃烧溶解器中,如硫酸、硝酸和氢氧化钠都在同一个设备中处理。

NS112应用范围:

NS112广泛应用于各种使用温度不超过550℃的工业领域。

典型应用为:

● 硫酸酸洗工厂用的加热管、容器、筐及链等。

● 海水冷却热交换器、海洋产品管道系统、酸性气体环境管道。

● 磷酸生产中的热交换器、蒸发器、洗涤、浸渍管等。

● 石油精炼中的空气热交换器

● 食品工程

● 化工流程

● 高压氧气应用的阻燃合金。?

NS112加工和热处理

NS112适合于热加工和冷加工,但由于具有高强度,需要大功率的加工设备。

NS112都适合于用各种方便的焊接方法焊接。

NS112加热:

1.在热处理之前及热处理过程中应始终保持工件清洁。

2.在热处理过程中不能接触硫、磷、铅及其它低熔点金属,否则会损害材料的性能,应注意清除诸如标记漆、温度指示漆、彩色蜡笔、润滑油、燃料等污物。

3.燃料中的含硫量越低越好,天然气中的硫含量应少于0.1%,重油中硫含量应少于0.5%。

4.考虑到温度控制和保持清洁的需要,最好在真空炉或气体保护炉中进行热处理。

5.也可以在箱式炉或燃气炉中加热,但炉气必须洁净并以中性至微氧化性为宜,应避免炉气在氧化性和还原性之间波动,加热火焰不能直接烧向工件。

NS112热加工:

1. NS112的热加工温度范围1200℃~900℃,冷却方式为水淬或在760℃~540℃之间尽量快速冷却。热弯曲应在1150℃-1000℃之间进行。

2.为得到最佳抗腐蚀性能和抗蠕变性,热加工后要进行退火处理。

3.材料可以直接送入已升温至1200℃的炉中,材料的保温时间为每100mm 厚度保温60 分钟。保温足够的时间后迅速出炉,在规定的温度范围进行热加工。当材料温度降到低于热加工温度时,需重新加热。

NS112冷加工:

1.NS112 的加工硬化率大于奥氏体不锈钢,因此需要对加工设备进行挑选。冷加工材料应为退火热处理态,并且在冷加工时应进行中间退火。

2.若冷加工量大于10%,则在使用前需要对工件进行软化退火处理。

NS112热处理:

1.NS112的软化退火处理温度范围都是920℃~980℃,最佳处理温度是950℃。

2.为得到最佳的抗腐蚀性,冷却方式用水淬,厚度小于1.5mm 的材料也可用快速空冷。

3.在热处理过程中,都要按照前述的加热过程中必须保持清洁的事项操作。

NS112去氧化皮及酸洗:

1.NS112 的表面氧化物和焊缝周围的焊渣的附着性比不锈钢更强,机械方法和化学方法都可以使用,选择机械方法时要避免会产生金属污染或产生表面变形的方法。

2.在用HNO3/HF 混合酸进行酸洗前必须小心打磨或盐浴预处理将氧化膜打碎。

NS112机加工:

NS112须在退火热处理之后进行机加工,由于材料的加工硬化,因此宜用比加工低合金标准奥氏体不锈钢低的切削速度和重进刀进行加工,才能车入已冷作硬化的表层下面。

NS112焊接:

NS112适合用任何传统焊接工艺焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊、保护气体电弧焊等。

NS112的焊接必须在退火态进行,并清理干净污渍、粉尘和各种记号。

用低热量输入,层间温度不超过150℃。

无需焊前或焊后热处理。

NS112清理:

去除氧化皮、油污和各种标记印痕,并用丙酮对焊接区域的基体金属和填充合金(如焊条)进行清洁,注意不能使用三氯乙烯TRI、全氯乙烯PER 和四氯化物TETRA。

NS112边缘准备:

最好用机加工,如车、铣、刨,也可以进行等离子切割,若用后者,切割边缘(焊接面)一定要研磨干净平整,允许不过热的精磨。焊缝两边的母材约25mm 宽度的区域要打磨至露出光亮金属。

NS112坡口角度:

与碳钢相比,镍基合金和特种不锈钢的物理性能特点主要是低的热导率和高的膨胀系数,这些特性都要在焊接坡口准备时予以考虑,包括加宽底部间隙(1~3mm),同时由于熔融金属的粘滞性,在对接焊时应用更大的坡口角度(60~70°)以抵消材料的收缩。

NS112起弧:

不能在工件表面起弧,应在焊接面起弧,以防起弧点导致腐蚀。

NS112焊接工艺:

NS112适合用任何传统焊接工艺与同种材料或其他金属焊接,如钨电极惰性气体保护焊、等离子弧焊、手工亚弧焊、金属极惰性气体保护焊、熔化极惰性气体保护焊,其中脉冲电弧焊是首选方案。在用手工电弧焊时,推荐使用(Ar+He+H2+CO2)多种成份混合的保护气体。

NS112的焊接必须在退火态进行,并使用不锈钢丝刷清理干净污渍、粉尘和各种记号。在焊缝根部焊接时,为得到最佳的根部焊缝质量,操作必须非常小心(氩气99.99),这样在根部焊接完后焊缝就不产生氧化物。焊接热影响区产生的颜色要在焊缝区域未冷却时用不锈钢刷刷去。

NS112推荐使用的焊接材料:

GTAW/GMAW Nicrofer S 7020

W.-Nr.2.4806

SG-NiCr20Nb

AWS A 5.14 ER NiCr-3

BS 2901-NA 35

SMAW

W.-Nr.2.4648

EL-NiCr19Nb

AWS A 5.11 EniCrFe-3

NS112焊接参数及影响(热输入量):

焊接操作应在热量输入表规定的低热量输入下进行,用叠珠焊缝技术,层间温度不超过120℃,必须遵守焊接规范。

热量的输入Q 按下面的公式计算:

U=弧电压,伏特

I=焊接电流,安培

V=焊接速度,厘米/分钟。

NS112焊后处理(酸洗、刷除氧化物及热处理):焊接后应立即用不锈钢丝刷刷除氧化物,也就是说,在金属还没有产生焊接色的时候就刷,这样可以得到理想的表面质量而不需要酸洗。若没有特别要求或规定,酸洗通常是焊接中的最后一道工序,请参考去氧化皮及酸洗一节。焊接前后均不需要热处理。

高温合金是什么,有什么用

ma95金是一种具有优异性能的高温合金材料。它由镍、铬、钼和铁等元素组成,具有出色的耐高温、耐腐蚀和耐磨损性能。 首先,ma95金具有出色的耐高温性能。在高温环境下,ma95金能够保持良好的强度和稳定性,不会发生变形或熔化。这使得它成为航空航天、能源和化工等领域中高温部件的理想选择。 其次,ma95金具有优异的耐腐蚀性能。它能够在酸、碱、盐等各种腐蚀介质中保持稳定的化学性能,不会出现腐蚀、氧化或脆化现象。这使得ma95金在恶劣环境下的使用寿命更长,能够有效降低设备维修和更换成本。 此外,ma95金还具有出色的耐磨损性能。它的表面硬度高,能够抵抗各种磨损和磨粒的侵蚀,保持良好的表面光洁度和精度。这使得ma95金广泛应用于涡轮机械、汽车引擎和工具制造等领域,提高了设备的使用寿命和工作效率。 总之,ma95金以其出色的耐高温、耐腐蚀和耐磨损性能,成为众多领域中不可或缺的材料。它的应用将推动科技进步和工业发展,为人类创造更加美好的未来。

IncoloyMA956(MA956)化学元素成分含量(%)

IncoloyMA956(MA956)机械性能

高温合金是一种特殊的金属合金材料,能够在高温环境下保持其强度和韧性。MA956高温合金以其出色的高温性能和耐腐蚀性而著称。它主要由镍、铬和钼组成,同时还添加了少量的钛、铝和碳等元素。这些元素的添加使MA956高温合金具有极好的高温性能和抗腐蚀能力,因此被广泛应用于航空、航天、能源和化工等领域。

MA956高温合金的高温性能非常出色,可以在高达1000℃的高温环境下保持其强度和韧性。这种合金不仅可以承受高温下的机械应力,而且还具有优异的抗氧化性能,能够在高温下抵御腐蚀和磨损。这使得MA956高温合金成为制造高温零部件的理想材料,例如航空发动机和燃气轮机的涡轮叶片、燃烧室和排气系统等。

高温合金材料一般都有哪些,有什么特点

高温合金主要牌号:

固溶强化型铁基合金:

GH1015、GH1035、GH1040、GH1131、GH1140

时效硬化性铁基合金:

GH2018、GH2036、GH2038、GH2130、GH2132、GH2135、GH2136、GH2302、GH2696

固溶强化型镍基合金:

GH3030、GH3039、GH3044、GH3028、GH3128、GH3536、GH605,GH600

时效硬化型镍基合金:

GH4033、GH4037、GH4043、GH4049、GH4133、GH4133B、GH4169、GH4145、GH4090

国外的高温合金叫包含inconel系列 incoloy系列 Hastelloy系列

制造工艺/高温合金

不含或少含铝、钛的高温合金,一般用电弧炉或非真空感应炉冶炼。含铝、钛高的高温合金如在大气中熔炼时,元素烧损不易控制,气体和夹杂物进入较多,所以应用真空冶炼。为了进一步降低夹杂物的含量,改善夹杂物的分布状态和铸锭的结晶组织,可用冶炼和二次重熔相结合的双联工艺。冶炼的主要手段有电弧炉、真空感应炉和非真空感应炉;重熔的主要手段有真空自耗炉和电渣炉。

固溶强化型合金和含铝、钛低(铝和钛的总量约小于4.5%)的合金锭可用锻造开坯;含铝、钛高的合金一般要用挤压或轧制开坯,然后热轧成材,有些产品需进一步冷轧或冷拔。直径较大的合金锭或饼材需用水压机或快锻液压机锻造。

合金化程度较高、不易变形的合金,目前广泛用精密铸造成型,例如铸造涡轮叶片和导向叶片。为了减少或消除铸造合金中垂直于应力轴的晶界和减少或消除疏松,近年来又发展出定向结晶工艺。这种工艺是在合金凝固过程中使晶粒沿一个结晶方向生长,以得到无横向晶界的平行柱状晶。实现定向结晶的首要工艺条件是在液相线和固相线之间建立并保持足够大的轴向温度梯度和良好的轴向散热条件。此外,为了消除全部晶界,还需研究单晶叶片的制造工艺。

粉末冶金工艺,主要用以生产沉淀强化型和氧化物弥散强化型高温合金。这种工艺可使一般不能变形的铸造高温合金获得可塑性甚至超塑性

综合处理高温合金的性能同合金的组织有密切关系,而组织是受金属热处理控制的。高温合金一般需经过热处理。沉淀强化型合金通常经过固溶处理和时效处理。固溶强化型合金只经过固溶处理。有些合金在时效处理前还要经过一两次中间处理。固溶处理首先是为了使第二相溶入合金基体,以

便在时效处理时使γ、碳化物(钴基合金)等强化相均匀析出,其次是为了获得适宜的晶粒度以保证高温蠕变和持久性能。

固溶处理温度一般为1040~1220℃。目前广泛应用的合金,在时效处理前多经过1050~1100℃中间处理。中间处理的主要作用是在晶界析出碳化物和γ膜以改善晶界状态,与此同时有的合金还析出一些颗粒较大的γ相与时效处理时析出的细小γ相形成合理搭配。时效处理的目的是使过饱和固溶体均匀析出γ相或碳化物(钴基合金)以提高高温强度,时效处理温度一般为700~1000℃。

粉末冶金法的我国粉末冶金法发展现状

世界粉末冶金的技术现状

世界粉末冶金工业概况

2003年全球粉末货运总量约为88万吨,其中美国占51%,欧洲18%,日本13%,其它国家和地区18%。铁粉占整个粉末总量的90%以上。从2001年起,世界铁粉市场持续增长,4年时间增加了近20%。

汽车行业仍然是粉末冶金工业发展的最大动力和最大用户。一方面汽车的产量在不断增加,另一方面粉末冶金零件在单辆汽车上的用量也在不段增加。北美平均每辆汽车粉末冶金零件用量最高,为19.5公斤,欧洲平均为9公斤,日本平均为8公斤。中国由于汽车工业的高速发展,拥有巨大的粉末冶金零部件市场前景,已经成为众多国际粉末冶金企业关注的焦点。

粉末冶金铁基零件在汽车上主要应用于发动机、传送系统、ABS系统、点火装置等。汽车发展的两大趋势分别为降低能耗和环保;主要技术手段则是用先进发动机系统和轻量化。

欧洲对汽车尾气过滤为粉末冶金多孔材料又提供了很大的市场。在目前的发动机工作条件下,粉末冶金金属多孔材料比陶瓷材料具有更好的性能优势和成本优势。

工具材料是粉末冶金工业另一类重要产品,其别重要的是硬质合金。目前制造业的发展朝着3A方向,即敏捷性(Agility)、适应性(Adaptivity)和可预测性(Anticipativity)。这要求加工工具本身更锋利、刚性更好、韧性更高;加工材料的范围扩大到吕合、镁合金、钛合金以及陶瓷等;尺寸精度要求更高;加工成本要求更低;环境影响要减到最小,干式加工比例更大。这些新要求加快了粉末冶金工具材料的发展。硬质合金的晶粒(<200nm=和超粗晶粒(>6um);涂层技术发展很快,CVD、PVD、PCVD技术日益完善,涂层种类也很多,从常用的 CVDTiCN/Al2O3 /TiN到CVD PCBN(聚晶立方BN)以及PVD TiAIN,Al2O3 ,cBN(立方BN)和SiMAlON等,满足加工场合的需要。

信息行业的发展也为粉末冶金工业提供了新的契机。日本电子行业用的粉末冶金产品已经达到了每年4.3美元,其中热沉材料占23%,发光与点极材料占30%。前者主要包括散热材料,如Si/SiC,Cu-Mo,Cu-W,Al-SiC,AlN以及Cu/金刚石等材料;后者则主要包括钨、钼材料。

粉末注射成型

粉末注射成形仍然是当前研究的热点之一。粉末注射成形的材料已经从早期的铁基、硬质合金、陶瓷等对杂质含量不敏感,性能要求不是非常苛刻的体系,发展到了镍基高温合金、钛合金和铌材料。材料应用领域也从结构材料向功能材料发展、如热沉材料、磁性材料和形状记忆合金。材料结构也从单一均匀结构向复合结构发展。金属工注射成形技术可实现多种不同成分的粉末同时成形,因而能够得到具有三明治形式的复合结构。例如将316L不锈纲和17-4PH合金复合,能够实现力学性能的连续可调。粉末注射成形的一个重要发展方向与与微系统技术密切相关。在与微系统技术密切相关。在与微系统相关的领域中,如电子信息、微化学、医疗器械等,器件不断小型化,功能更加复合化。而粉末注射成形技术提供了实现的可能。微注射成形技术是对传统注射成形技术的改进。它是针对零件尺寸结构小到1um所开发的成形技术,基本工艺与传统注射成形一致,但原料粉末粒度更小。用微注射成形技术已经开发出了表面微结构精度10um的微流体装置,尺寸为350um~900um的不锈钢零件;实现了不同材料成分、复合结构的共烧结或共连接,获得了磁性/非磁性、导体/非导体微型复合零件。

粉末制备技术

粉末雾化一直是高性能粉末的制备技术。热气流雾化技术能够延长金属液滴在液相状态的时间,使粉末可以经过二次破碎(雾化),因而大大提高了雾化的效率,所得到的粉末粒度更为细小。ASL公司的研究结果表明,若将气体温度提高到330℃。制备相同粒度粉末所需的气体消耗量减少30%,其经济分析和工程化问题研究说明该技术是完全可行的。粉末雾化方面的技术有很大的改进。例如,用一种新型自由式气体雾化,能够得到更细的工具钢粉末,颗粒中碳化物的分布更均匀、缺陷更少。美国赫格拉斯公司将先进的炼钢技术用于粉末生产中,融合了电弧炼炉(EAF)技术、氩氧脱碳技术(ADO)、高性能雾化技术和氢退火技术,大大改善了粉末质量、粉末压坯密度和强度得到了提高。在活性粉末雾化方面,为了减少熔炼过程熔体与坩埚的反应,德国开发了电极感应熔炼气雾化(EIGA)技术,可制备高活性的钛、锆以及TiAl金属间化合物粉末。机械合金化仍然是研究的热门,但大多数是实验室工作。值得一提的是德国Zoz公司才用自己开发的高能球磨设备研磨电弧熔炼炉的炉渣,然后经过湿法冶金回收金属,这一技术既改善了环境,有开拓了巨大的市场。

粉末压制技术

传统粉末压制技术在很大程度上依赖于设备的改良和过程的优化。几家知名的压机生产商均推出了精度控制更准、自动化程度更高的新型号。

粉末烧结理论与技术

微波烧结作为一种新的快速烧结技术,已经完全适用于金属粉末材料,如粉末钢、硬质合金、有色金属等。微波烧结的工业化也许指日可待,因为不管是设备和技术的成熟度,还是批量化生产能力都没有太大问题;而主要障碍是生产商的接受程度和风险度。

放电等离子烧结(SPS)的研究也不少,材料体系也从陶瓷扩展到了金属材料,特别是一些超细晶材料,如铝合金、镁合金和自润滑铁基材料等。但是由于其单件生产的特点,该方法恐怕只能用来作一些基础研究。

喷射沉积在制备大型、细晶材料方面非常有优势。该技术最初主要生产铝合金和铝硅合金。随着熔炼技术的提高,喷射沉积已可用来制备工具钢和高温合金。德国不来梅大学报导用喷射沉积制备出了单件质量超过100公斤,内径40mm,外径500mm,宽100mm的高温合金环。

快速成形技术近年来引起了很多学者的关注。在粉末冶金领域应用最多的是直接金属激光烧结。目前该技术已用于钢铁粉末和钛合金粉末等。另一种金属快速成形方法是三维印刷。该方法非常方便用于各种不同成分合金按照不同结构需要进行三维微观堆积,目前尚处于概念阶段。但该技术已用来制备了一些由金属+粘结剂组成的结构,以及梯度功能材料。

金属粉末多孔材料

金属粉末多孔材料的应用非常广泛,如轻质结构材料、高温过滤装置、分离膜等。目前最大的市场可能是柴油发动机的烟尘过滤装置。德国的 Fraunhofer研究所开发了一种金属空心球制备技术,在聚合物基体上涂覆金属粉末料浆,然后通过脱涂聚合物基体和粘结剂,最后烧结成各种具有空心结构的金属球体。球体的直径可丛1mm至8mm。所制备的钢空心球的密度仅0.3g/cm3。

硬质合金

纳米晶和梯度结构是硬质合金的两个重点方向。纳米晶材料方面包括晶粒长大控制和纳米粉末制备。梯度结构合金方面包括工艺与结构的关系。将纳米晶和梯度结构结合起来可能是一个很好的方向,能够在更微观层次上实现性能的可调。硬质合金的硬度高,可加工性差,因此用注射成形制备复杂形状中小型零件是发展趋势,但是其商用化仍然受技术成熟度的控制。硬质合金其他方面的工作包括天家稀土及合金元素、断裂韧性和可靠性表征等。

粉末轻金属合金

汽车轻量化为铝、镁、钛等轻金属材料提供了广阔的应用前景。粉末铝合金在汽车上可应用的部位非常多,但Al-Si合金由于高比强度、高比刚度、低热膨胀系数和耐磨性好,有可能率先在油泵齿轮方面大规模应用。从工业化角度来看,对粉末冶金铝合金制备过程的优化研究更为重要。铝合金的另一个研究热点是复合材料,包括传统的Al/SiC,Al/C,Al/BN,Al/Ti(C,N)以及新出现的纳米碳管增强铝合金。高强粉末铝合金与快速凝固技术密切相关。通过成分设计,在纯铝基体中加入金属间化合物行成组元,可以制备高强度、高韧性、高热稳定性兼顾的铝合金。该材料的室温强度大于600Mpa,延伸率超过10%,在400℃还有很好的热稳定,疲劳极限是锻造铝合金的2倍。

镁合金的密度更小,其应用前景可能更好,但目前仍处于研究状态。用快速凝固方法也是制备高性能粉末镁合金的重要手段。目前该技术在安全性方面已经没有太大的问题,所制备出的材料性能也远远高于铸造合金。

钛合金在汽车上的应用主要是成本问题,而粉末钛合金的主要障碍在于高性能低成本钛粉。英国QinetiQ Ltd开发了一种店脱氧技术(EDO),可批量生产钛粉。该技术与传统的以海绵钛为原料的氢化脱氢过程完全不同。它是一种类似于熔盐电解的方法,以 TiO2为阴极,石墨为阳极,在电解过程中TiO2的阳极迁移,并消耗阳极的炭形成CO,在阴极得到钛粉。钛粉的氧含量在0.035%~0.4%之间。用这一技术还可方便地制备各种钛合金粉末。由于对气氛和杂质的敏感性,粉末钛合金的烧结也是工艺难点,通常与要热等静压或后续热加工。通过添加共晶形成组元和稀土元素能够明显改善粉末钛合金的烧结致密度,其力学性能也能达到锻造钛合金水平。这一系列工作将大大推动钛合金在汽车机关键部件上的应用。

粉末零件后续处理技术

后续处理对粉末冶金零件的性能至关重要。烧结硬化将烧结和热处理融为一体,合金成分和冷却条件对材料性能的影响很大。Miba公司用钻孔技术对零件可加工性进行了评价。神户钢铁公司在烧结钢中添加一种复杂钙氧化物,代替通常用的MnS,明显改善了零件的可加工性,而不损害其力学性能。此外随着应用的扩大,粉末铝及复合材料的切削、多孔材料的线切割也受到了关注。

表面硬化是提高粉末冶金齿轮的重要手段。虽然铁基零件的密度已可达到7.4g/cm3,但在齿根和接触面仍需进一步提高密度和硬度。用径向轧制已成为了一种重要手段,目前,各大铁基零件厂家对高性能粉末冶金齿轮的生产和应用都有表现出极大的关注。

粉末冶金过程模拟和标准化

欧洲启动了两个(PM Modnet和PM Dienet),首先针对铁基零件生产过程的模拟,随后力图扩展到其他材料体系,目前已取得了许多成果。英国也启动了大型研究,包括7个研究组和23 个企业,主要研究各种材料压制工艺的过程控制。因此,粉末压制过程的模拟工作已成为研究热点,相对而言,基础理论的工作,如致密化方程和本构方程方面的工作较少,而用有限元方法和其它数值模拟方法的多。当然,压制过程模拟还包括摩擦、脱模、充模以及压坯性能模拟。

粉末冶金过程动态观察和产品质量控制与日常生产密切相关。用X射线CT方法,能够很方便地动态观察粉末烧结过程的三维密度、孔隙度、颗粒尺寸分布和烧结颈的长大情况。用高温IET还能测定材料的刚度和内耗,与其他手段相结合,能够方便地描述显微组织和力学性能的动态演化。用动态热成像技术可以很快发现注射坯中的裂纹。目前在生产线上应用最多的是声学手段,各大粉末冶金公司都运用了这种无损探伤技术及时发现有缺陷产品或预测产品性能,这包括德国GKN、日本Nissan Motor、西班牙AMES等。但是,这种定量分析是一个系统工作,包括多变量统计、图象分析、物理和化学理论以及数值模拟等,只有多学科的工作者一起努力才能实现精确表征。

粉末冶金方法对某些特殊功能材料的制备非常有优势,如用机械合金化能够制备纳米结构的MgB2超导材料和CuNb磁体。粉末功能材料的最大市场是磁性材料。在NbFeB材料方面,用雾化粉提高密度和性能是最重要方向。该种粉末适用于注射成形,因而对中小型异型磁性材料零件的制备非常有意义。软磁复合材料(SMC)是将具有复合结构的铁粉固结起来的,在电动马达上的应用市场非常大。因而这方面的研究也很多,包括市场与应用分析、结构设计与优化、生产与工艺控制、疲劳性能等。